TidyTuesday
    • About TidyTuesday
    • Datasets
      • 2025
      • 2024
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
    • Useful links

    On this page

    • Christmas Novels
      • The Data
      • How to Participate
        • PydyTuesday: A Posit collaboration with TidyTuesday
      • Data Dictionary
        • christmas_novel_authors.csv
        • christmas_novel_text.csv
        • christmas_novels.csv
      • Cleaning Script

    Christmas Novels

    This week we’re exploring “Christmas” novels from Project Gutenberg via the {gutenbergr} R package! I originally curated this dataset to serve as an “ad” of sorts for a new maintainer of that package, but Jordan Bradford has already assumed that role. Thank you for taking over stewardship of the package, Jordan! He could still use help, so, if you enjoy working with text data and R, consider stepping up to help maintain this useful package!

    You might find Text Mining with R helpful for analyzing this data.

    • Which is mentioned more often in these novels: “spirit” or “santa”?
    • What is the overall sentiment of each novel?
    • How does the text sentiment change over the course of each novel?

    Thank you to Jon Harmon, Data Science Learning Community for curating this week’s dataset.

    The Data

    # Using R
    # Option 1: tidytuesdayR R package 
    ## install.packages("tidytuesdayR")
    
    tuesdata <- tidytuesdayR::tt_load('2025-12-30')
    ## OR
    tuesdata <- tidytuesdayR::tt_load(2025, week = 52)
    
    christmas_novel_authors <- tuesdata$christmas_novel_authors
    christmas_novel_text <- tuesdata$christmas_novel_text
    christmas_novels <- tuesdata$christmas_novels
    
    # Option 2: Read directly from GitHub
    
    christmas_novel_authors <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_authors.csv')
    christmas_novel_text <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_text.csv')
    christmas_novels <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novels.csv')
    # Using Python
    # Option 1: pydytuesday python library
    ## pip install pydytuesday
    
    import pydytuesday
    
    # Download files from the week, which you can then read in locally
    pydytuesday.get_date('2025-12-30')
    
    # Option 2: Read directly from GitHub and assign to an object
    
    christmas_novel_authors = pandas.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_authors.csv')
    christmas_novel_text = pandas.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_text.csv')
    christmas_novels = pandas.read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novels.csv')
    # Using Julia
    # Option 1: TidierTuesday.jl library
    ## Pkg.add(url="https://github.com/TidierOrg/TidierTuesday.jl")
    
    using TidierTuesday
    
    # Download files from the week, which you can then read in locally
    download_dataset('2025-12-30')
    
    # Option 2: Read directly from GitHub and assign to an object with TidierFiles
    
    christmas_novel_authors = read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_authors.csv")
    christmas_novel_text = read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_text.csv")
    christmas_novels = read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novels.csv")
    
    # Option 3: Read directly from Github and assign without Tidier dependencies
    christmas_novel_authors = CSV.read("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_authors.csv", DataFrame)
    christmas_novel_text = CSV.read("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novel_text.csv", DataFrame)
    christmas_novels = CSV.read("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-12-30/christmas_novels.csv", DataFrame)

    How to Participate

    • Explore the data, watching out for interesting relationships. We would like to emphasize that you should not draw conclusions about causation in the data. There are various moderating variables that affect all data, many of which might not have been captured in these datasets. As such, our suggestion is to use the data provided to practice your data tidying and plotting techniques, and to consider for yourself what nuances might underlie these relationships.
    • Create a visualization, a model, a Quarto report, a shiny app, or some other piece of data-science-related output, using R, Python, or another programming language.
    • Share your output and the code used to generate it on social media with the #TidyTuesday hashtag.
    • Submit your own dataset!

    PydyTuesday: A Posit collaboration with TidyTuesday

    • Exploring the TidyTuesday data in Python? Posit has some extra resources for you! Have you tried making a Quarto dashboard? Find videos and other resources in Posit’s PydyTuesday repo.
    • Share your work with the world using the hashtags #TidyTuesday and #PydyTuesday so that Posit has the chance to highlight your work, too!
    • Deploy or share your work however you want! If you’d like a super easy way to publish your work, give Connect Cloud a try.

    Data Dictionary

    christmas_novel_authors.csv

    variable class description
    gutenberg_author_id integer Project Gutenberg author ID.
    author character The agent_name field from the original metadata.
    birthdate integer Year of birth, if known.
    deathdate integer Year of death, if known.
    wikipedia character Link to Wikipedia article on the author. If there are multiple, they are ”
    aliases character Character vector of aliases. If there are multiple, they are “/”-delimited.

    christmas_novel_text.csv

    variable class description
    gutenberg_id integer Numeric ID, used to retrieve works from Project Gutenberg
    text character A line of text from the work (NA indicates an empty line)

    christmas_novels.csv

    variable class description
    gutenberg_id integer Numeric ID, used to retrieve works from Project Gutenberg.
    title character Title of the work.
    gutenberg_author_id integer Project Gutenberg author ID.

    Cleaning Script

    library(gutenbergr)
    library(tidyverse)
    
    # I do this as a separate step so I can be sure the option has resolved before I
    # do anything in bulk.
    gutenbergr::gutenberg_get_mirror()
    
    christmas_novels_raw <- gutenbergr::gutenberg_works(
      dplyr::if_all(dplyr::everything(), ~ !is.na(.)),
      stringr::str_detect(.data$gutenberg_bookshelf, "Novels"),
      stringr::str_detect(.data$title, "Christmas"),
      stringr::str_detect(.data$gutenberg_bookshelf, "Christmas")
    )
    
    christmas_novels <- christmas_novels_raw |>
      dplyr::distinct(.data$gutenberg_id, .data$title, .data$gutenberg_author_id)
    
    christmas_novel_authors <- christmas_novels_raw |>
      dplyr::distinct(.data$gutenberg_author_id) |>
      dplyr::left_join(gutenbergr::gutenberg_authors, by = "gutenberg_author_id") |>
      # Just use the "aliases" column, "alias" is redundant.
      dplyr::select(-"alias")
    
    christmas_novel_text <- gutenbergr::gutenberg_download(christmas_novels)